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Abstract. Priority queues are fundamental to many multiprocessor ap-
plications. Several priority queue algorithms based on skiplists have been
proposed, as skiplists allow concurrent accesses to different parts of the
data structure in a simple way. However, for priority queues on multipro-
cessors, an inherent bottleneck is the operation that deletes the minimal
element. We present a linearizable, lock-free, concurrent priority queue
algorithm, based on skiplists, which minimizes the contention for shared
memory that is caused by the DeleteMin operation. The main idea is
to minimize the number of global updates to shared memory that are
performed in one DeleteMin. In comparison with other skiplist-based
priority queue algorithms, our algorithm achieves a 30 – 80% improve-
ment.
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blocking, Skiplist

1 Introduction

Priority queues are of fundamental importance in many multiprocessor applica-
tions, ranging from operating system schedulers, over discrete event simulators,
to numerical algorithms. A priority queue is an abstract data type, contain-
ing a set of key-value pairs. The keys are ordered, and typically interpreted
as priorities. It supports two operations: Insert of a given key-value pair, and
DeleteMin, which removes the pair with the smallest key and returns its value.
Traditionally, priority queues have been implemented on top of heap or tree data
structures, e.g., [10]. However, for priority queues that are accessed by large
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numbers of concurrent processor cores, skiplists [15] are an increasingly popu-
lar basis. A major reason is that skiplists allow concurrent accesses to different
parts of the data structure in a simple way. Several lock-free concurrent skiplist
implementations have been proposed [3, 4, 16].

The performance of skiplist-based data structures can scale well when con-
current threads access different parts of the data structure. However, priority
queues offer the particular challenge that all concurrent DeleteMin operations
try to remove the same element (viz. the element with the smallest key). This
makes DeleteMin the obvious bottleneck for scaling to large numbers of cores.
In existing skiplist-based concurrent priority queues [8, 11, 17], the deletion of an
element proceeds in two phases: first, the node is logically deleted by setting a
delete flag in the node; second, the node is physically deleted by moving pointers
in adjacent node(s). Both the logical and the physical deletion involve at least
one global update operation, which must either be protected by a lock, or use
atomic primitives such as Compare-and-Swap (CAS). Each CAS is expensive
in itself, but it also incurs other costs, viz. (i) concurrent CAS operations to the
same memory cell cause overhead due to contention, since they must be serial-
ized and all but one will fail, and (ii) any other write or read to the same memory
location (more precisely, the same cache line) by another core must be serialized
by the coherence protocol, thus generating overhead for inter-core communica-
tion. In our experimentation, we have found that the global update operations in
the DeleteMin operation are the bottleneck that limits scalability of priority
queues. To increase scalability, one should therefore devise an implementation
that minimizes the number of such updates.

In this paper, we present a new linearizable, lock-free, concurrent priority
queue algorithm, which is based on skiplists. The main advantage of our algo-
rithm is that almost all DeleteMin operations are performed using only a single
global update to shared memory. Our algorithm achieves this by not performing
any physical deletion of nodes in connection with logical deletion. Instead, our
algorithm performs physical deletion in batches when the number of logically
deleted nodes exceeds a given threshold. Each batch deletion is performed by
simply moving a few pointers in the sentinel head node of the list, so that they
point past logically deleted nodes, thus making them unreachable. Thus only one
CAS per DeleteMin operation is required (for logical deletion). To enable this
batch deletion, we have developed a novel technique to maintain that logically
deleted nodes always form a prefix of the skiplist.

Since logically deleted nodes are not immediately physically deleted, this
implies that subsequent operations may have to perform a larger number of
read operations while traversing the list. However, these reads will be cheap, so
that the algorithm overall performs significantly better than previous algorithms,
where these reads would conflict with concurrent physical deletions, i.e., writes.

The absence of physical deletion makes our algorithm rather simple in com-
parison to other lock-free concurrent skiplist algorithms. It is furthermore lin-
earizable: in the paper, we present a high-level proof, and we report on a ver-
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ification effort using the SPIN model checker, which we have used to verify
linearizability by extensive state-space exploration [9, 19].

We have compared the performance of our algorithm to two skiplist-based
priority queue algorithms, each of which employs one of the currently existing
DeleteMin techniques: (i) a lock-free adaptation of Lotan and Shavit’s non-
linearizable priority queue [11], which is similar to the algorithm by Herlihy and
Shavit [8], and (ii) an algorithm which uses the same procedure for DeleteMin
as the algorithm by Sundell and Tsigas [17]. Our algorithm achieves a perfor-
mance improvement of 30 – 80 % in relation to the compared algorithms, on a
limited set of benchmarks. The implementation of the algorithm, and the SPIN
model, are both available at user.it.uu.se/~jonli208/priorityqueue.

Furthermore, by comparing our algorithm to a specifically designed micro-
benchmark, we show that for many cores, it is entirely limited by the logical
deletion mechanism in DeleteMin.

In summary, this paper shows a technique for removing scalability bottlenecks
in concurrent data structures that are caused by concurrent memory accesses to
the same memory location. We show that it is crucial to minimize the number
of concurrent global updates, and present a novel internal representation of a
skiplist that allows to use only a single global update per DeleteMin operation.
We hope that this work will inspire analogous work to develop other concurrent
data structures, e.g., concurrent heaps, that minimize conflicts due to concurrent
updates.

The paper is organized as follows. In Section 2, we give an overview of related
work. In Section 3, we present the main new ideas of our algorithm. In Sec-
tion 4, we present our algorithm in detail, and prove its correctness in Section 5.
The performance evaluation is shown in Section 6. Section 7 contains conclu-
sions. The implementation of the algorithm and the SPIN model are available
at user.it.uu.se/~jonli208/priorityqueue.

2 Related Work

Skiplists were first proposed for concurrent data structures by Pugh [14, 15], one
reason being that they easily allow concurrent modification of different parts
of the list. Using skiplists for priority queues was first proposed by Lotan and
Shavit [11]. They separated logical and physical deletion, as described in the
previous section, which allowed physical deletion of different nodes to proceed
in parallel. This still incurs costs of type (ii) (i.e., serializing CAS operations
with other accesses to the same memory cell), since many other threads are
simultaneously accessing the list. By adding a timestamping mechanism, their
algorithm was made linearizable. A lock-free adaptation of this algorithm was
presented by Herlihy and Shavit [8], who also observed the contention caused by
concurrent physical deletions.

Sundell and Tsigas [17] were first to present a lock-free implementation of
a skiplist-based priority queue. Their DeleteMin operation performs logical
deletion followed by physical deletion. To achieve linearizability, only a single
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logically deleted node at the lowest level of the skiplist is allowed at any point
in time. Any subsequent thread observing a logically deleted node will help
complete the physical deletion. This may reduce latency in some cases, but
suffers in general a high cost of both type (i) and (ii). Their skiplist further has
back pointers to speed up deletion of elements, and employs back-off to reduce
contention of the helping scheme.

Crain et al. [1] propose a technique to reduce memory contention by deferring
the physical insertion and removal of logically deleted nodes to a point in the
execution when contention is low. In the context of skiplist-based priority queues,
this would reduce contention between conflicting global updates, but not reduce
the number of needed updates, as is done in our algorithm. Thus, they do not
reduce the contention between updates and concurrent reads.

Hendler et al. [6] present a methodology, called flat-combining, which reduces
contention in arbitrary concurrent data structures (exemplified using a priority
queue) that employ coarse-grained locking. In their approach, contended op-
erations are combined into bigger operations, that are handled by the thread
currently owning unique access to the structure. Their methodology is orthogo-
nal to ours.

3 Overview of Main Ideas

In this section, we informally motivate and describe our algorithmic invention.
Today’s multicore processors are typically equipped with a non-uniform mem-

ory architecture, and a cache coherence system, which provides a coherent view
of memory to the processor cores. Whenever a core updates a shared memory
location, the cache system must first invalidate copies in caches at cores that
have previously accessed this location, and afterwards propagate the update to
caches in cores that subsequently access the location. The effect is that updates
(i.e., writes) cause high latencies if they update memory locations that are ac-
cessed by other cores. Thus, a limiting factor for scalability of concurrent data
structure is the number of global updates that must be performed to locations
that are concurrently accessed by many cores.

Let us now discuss the overhead caused by DeleteMin operations, and how
our algorithm reduces it. Skiplists are search structures consisting of hierarchi-
cally ordered linked lists, with a probabilistic guarantee of being balanced. The
lowest-level list is an ordered list of all stored elements. Higher-level lists serve as
shortcuts into lower-level lists, achieving logarithmic search time. Fig. 1a shows a
skiplist with 3 elements, having keys 1, 2, and 5. There are sentinel head and tail
nodes at the beginning and end. In existing lock-free skiplists [4, 8, 17], a node is
deleted by first logically deleting it, by setting a delete flag in it. Thereafter it is
physically deleted, by moving pointers in adjacent node(s). In Fig. 1a, nodes 1
and 2 have been logically deleted by setting their delete flags, indicated by black
dots. In order to physically remove them, all pointers in the head node and node
1 must be moved. Both logical and physical deletion of a node thus require global
update operations, typically CAS-es. During this deletion, many other threads
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will read the pointers in the first nodes of the list, thus incurring large costs by
invalidations and update propagation in the cache coherence system.

H 1 2 5 T

(a)

H 1 2 5 T

DeleteMin()

(b)

Fig. 1. To the left, memory positions affected by physical deletion of node 1 and 2 in
skiplist. To the right, ongoing deletion of node 5 in the new algorithm.

In our new algorithm, we implement the DeleteMin operation without per-
forming physical deletion of nodes, in the sense that nodes are never unlinked
from the list. Physical deletion is performed in batches, i.e., instead of perform-
ing a physical deletion after each logical deletion, we update the pointers in
the head node to remove a large number of nodes from the list at a time. The
reduction in physical deletion implies that concurrent DeleteMin operations
may have to perform a larger number of read operations when traversing the
list to find the node to be deleted. However, due to the microarchitecture of
today’s processors, the cost of these reads, relative to the latencies incurred by
an increased number of global writes (e.g., CAS), will be very cheap. A read of
a non-modified memory position can be up to 30 times faster than a read of a
modified memory position in a multi-socket system [13].

A prerequisite for our scheme is that the logically deleted nodes always form
a prefix of the list. This is not the case in existing skiplist-based priority queue
algorithms. We have therefore added two mechanisms to our algorithm, whose
combined effect is the essence of our algorithmic invention.

1. The delete flag, which signals logical deletion of a node is colocated with the
pointer of the preceding node (for example in the least-order bit, as detailed
by Harris [5]), and not in the deleted node itself.

2. The list contains always at least one logically deleted node (except initially,
when no node has yet been deleted).

The first mechanism prevents insertions in front of logically deleted nodes (in
contrast to placing the delete flag in the node itself, which prevents insertions
after logically deleted nodes), and the second mechanism guarantees that inser-
tions close to the first non-deleted node in the list are safe. Without the second
mechanism, Insert would no longer be guaranteed to be correct, as a conse-
quence of the first mechanism.

Fig. 1b shows how the list in Fig. 1a is represented in our algorithm. Note how
the delete flags for nodes 1 and 2 are located in the preceding nodes. A typical
DeleteMin operation only needs to traverse the lowest level of the skiplist, and
set the delete flag of the first node in which it is not already set.



6

H 1 2

3

5 T

DeleteMin()

Insert(3)

H 1 2

3

5 T

Insert(3)

H 1 2

3

5 T

DeleteMin()

Fig. 2. Concurrent DeleteMin and Insert operation in the new algorithm.

To illustrate how our location of the delete flag prevents insertions in front
of logically deleted nodes, Fig. 2 depicts a situation in which nodes 1 and 2
are deleted, and two concurrent threads are active: a DeleteMin operation is
about to set the delete flag in node 2, and an Insert(3) operation is about
to move the lowest level pointer of node 2 to point to the new node 3. Two
outcomes are possible. If Insert(3) succeeds first, resulting in the situation at
bottom right, the DeleteMin operation will just proceed to set the delete bit
on the new pointer pointing to the new node 3, which is then logically deleted.
If DeleteMin succeeds first, resulting in the situation at top right, the CAS of
the Insert(3) will fail, since the pointer in node 2 has changed, thus preventing
insertion in front of the logically deleted node 5.

When designing lock-free lists, one must be careful to avoid problems with
inconsistent pointer updates when nodes are simultaneously inserted and deleted
at the same place in the list. However, in our algorithm we avoid most of these
problems, since we do not use fine-grained pointer manipulation to physically
delete nodes. A particular consequence is that our algorithm is rather easily seen
to be linearizable, in contrast to, e.g., the algorithm by Lotan and Shavit [11],
in which timestamps are required to achieve linearizability.

4 The Algorithm

In this section, we describe our algorithm in detail. A skiplist stores a set of
key-value pairs, ordered according to the keys. Internally, it consists of a set of
hierarchically ordered linked lists. The lowest-level list (i.e., level 0) is a complete
ordered list of all stored key-value pairs, which also defines the logical state of
the skiplist. Higher level linked lists serve as shortcuts into lower levels. Thus, a
skiplist with only one level is simply an ordinary linked list. We assume unique
keys, but duplicates can be handled as detailed in previous work [4, 17].
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Listing 1 Skiplist and
node structures.

1 structure node t:
2 value t value
3 key t key
4 bool d
5 bool inserting
6 node t ∗next[]

7 structure
skiplist t:

8 node t ∗head
9 node t ∗tail

10 integer nlevels

A node in the skiplist is a structure, as described
in Listing 1, which contains a value, a key, and an ar-
ray of next pointers, which contains one pointer for
each level in which the node participates. Each node
also contains a delete flag d, which is true if the suc-
cessor of the node is deleted from the logical state of
the list. In the actual implementation, the delete flag
is stored together with the lowest-level next pointer,
in its least-order bit, so that atomic operations can be
performed on the combination of the lowest-level next
pointer and the delete flag. In our pseudocode, we use
the notation 〈x.next[0], x.d〉 to denote the combination
of a pointer x.next[0] and a delete flag x.d, which can
be stored together in one word. Each node also has a
flag inserting, which is true until Insert has completed the insertion.

Algorithm 2 Deletion of minimal element in new algorithm.

1 function DeleteMin(skiplist t q)
2 x← q.head, offset ← 0, newhead ← Null, obshead ← x.next[0]
3 repeat
4 〈nxt , d〉 ← 〈x.next[0], x.d〉 // Peek forward.
5 if nxt = q.tail then // If queue is empty, return.
6 return Empty
7 if x.inserting and newhead = Null then
8 newhead ← x // Head may not surpass pending insert.

9 〈nxt, d〉 ←FAO(&〈x.next[0], x.d〉, 1) //Logical deletion of successor to x.
10 offset ← offset +1
11 x ← nxt // Traverse list to next node.
12 until not d // If delete bit of x set, traverse.
13 v ← x.value // Exclusive access to node x, save value.
14 if offset < BoundOffset then return v

15 if newhead = Null then newhead ← x
16 if CAS(&〈q.head.next[0], q.head.d〉, 〈obshead , 1〉, 〈newhead , 1〉) then
17 Restructure(q) // Update head’s upper level pointers.
18 cur ← obshead
19 while cur 6= newhead do // Mark segment for memory reclamation.
20 nxt ← cur.next[0]
21 MarkRecycle(cur)
22 cur ← nxt
23 return v

The DeleteMin operation. The DeleteMin operation is shown in Algo-
rithm 2. In the main repeat-until loop, it traverses the lowest-level linked list
from its head, by following next pointers, searching for the first node not having
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its delete flag set. At line 5, it is checked whether the successor of the current
node points to the dummy tail node, in which case DeleteMin returns Empty.
Otherwise, the delete flag is unconditionally set using an atomic Fetch-and-Or1

(FAO) instruction (at line 9). If the updated node’s delete flag was set before the
FAO (inspected at line 12), its successor was already deleted, and the traversal
continues to the next node. Otherwise, the node’s successor has been successfully
deleted, and the successor’s value may safely be read (at line 13).

After the traversal, the DeleteMin operation checks whether the prefix of
logically deleted nodes (measured by variable offset) has now become longer than
the threshold BoundOffset. If so, DeleteMin tries to update the next[0]
pointer of q.head to the value of newhead, using a CAS instruction; it can be
proven that all nodes that precede the node pointed to by newhead are already
logically deleted. It should be noted that newhead will never go past any node
with inserting set to true (i.e., in the process of being inserted), as ensured
by lines 7 and 15. If the CAS is successful, this means that DeleteMin has
succeeded to physically remove a prefix of the lowest-level list. If the CAS is
unsuccessful, then some other DeleteMin operation has started to perform
the physical deletion, and the operation returns. In the successful case, the op-
eration must proceed to update the higher level pointers, which is done in the
Restructure operation, shown in Algorithm 3. After the completion of the Re-
structure operation, the DeleteMin operation proceeds to mark the nodes
between the observed first node, obshead, and the newhead node, as ready for
recycling (lines 19 – 22).

Algorithm 3 Restructure operation.

1 function Restructure(skiplist t q)
2 i← q.nlevels −1, pred ← q.head
3 while i > 0 do
4 h← q.head.next[i]
5 cur ← pred .next[i]
6 if not h.d then
7 i← i− 1
8 continue
9 while cur.d do

10 pred ← cur
11 cur ← pred.next[i]

12 if CAS (&q.head.next[i], h,
pred.next[i]) then

13 i← i− 1

The Restructure operation
updates the pointers of q.head, ex-
cept for level 0, starting from the
highest level. A traversal is initiated
from the top level head pointed node.
At each level, the state of the head’s
pointer at the current level is first
recorded, at line 4, and considered for
updating only if the node pointed to
has become deleted. Thereafter, that
level is traversed until encountering
the first node whose successor does
not have the delete flag set, stored
in variable pred, at lines 9 – 11. The
head node’s next pointer at that level
is then updated by means of a CAS, at line 12. If successful, the traversal con-
tinues one level down from pred. If the CAS operation fails, the same procedure
will then be repeated for the same level, also here continuing from pred.

1 Fetch-and-Or is an instruction that atomically updates a memory location using or,
and returns the previous value. It can be emulated using CAS, and is used here to
simplify presentation.
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Algorithm 4 Insertion of node with priority k.

1 function Insert(skiplist t q, key t k, value t v)
2 height ← Random(1, q.nlevels), new ← AllocNode(height)
3 new.key ← k, new.value ← v, new.d ← 0, new.inserting ← 1
4 repeat
5 (preds, succs, del) ← LocatePreds(q, k)
6 new.next[0] ← succs[0] //Prepare new to be inserted.
7 until CAS(&〈preds[0].next[0], preds[0].d〉, 〈succs[0], 0〉, 〈new , 0〉)
8 i ← 1
9 while i < height do //Insert node at higher levels.

10 new.next[i] ← succs[i] //Set next pointer of new node.
11 if new.d or succs[i].d or succs[i] = del then
12 break //new already deleted, finish.

13 if CAS(&preds[i].next[i], succs[i], new) then
14 i ← i + 1 //If success, ascend to next level.
15 else
16 (preds, succs,del) ← LocatePreds(q, k)
17 if succs[0] 6= new then break //New has been deleted.

18 new.inserting ← 0 //Allow batch deletion past this node.

The Insert operation. The Insert operation is similar to a typical concurrent
insert operation in skiplist algorithms [4, 8, 17]. The main difference is that the
logically deleted prefix and the separation of the delete flag and the node has to
be taken into account. The operation (Algorithm 4) works as follows. The new
node is first initialized at lines 2 – 3. Thereafter, a search for the predecessor
nodes, at each level, of the position where the new key value is to be inserted,
is performed by the operation LocatePreds (at line 5). The LocatePreds
operation itself is shown in Algorithm 5.

Once the candidate predecessors and successors have been located, the new
node is linked in at the lowest level of the skiplist, by updating the lowest-level
predecessor’s next pointer to point to new using CAS, at line 7. Note that this
pointer also contains the delete flag: this implies that if meanwhile succs[0] has
been deleted, the delete bit in preds[0].next[0] has been modified, and the CAS
fails. If the CAS is successful, then Insert proceeds with insertion of the new
node at higher levels. This is done bottom up, so that a node is visible on all
lower levels before it is visible on a higher level. As a consequence, it is always
possible to descend from a level i + 1 list to a level i list.

The insertion at higher levels proceeds level by level, going from lower to
higher levels. For each level i, it first sets the new node’s next[i] pointer to
point to the candidate successor, at line 10. Thereafter, it checks whether the
lowest-level successor of the new node has been deleted since new was inserted,
at line 11, or if the candidate successor is deleted. In the former case, it is implied
that new is deleted as well. In the latter case, the result from LocatePreds is
possibly skewed, as depicted in Fig. 3, and elaborated on in the next paragraph.
In both cases the operation is considered completed, and it returns immediately.



10

Otherwise, the level i insertion is attempted at line 13. If successful, the insertion
ascends to the next level. If unsuccessful, predecessors and successors will be
recorded anew (line 16), and the insertion procedure will be repeated for level
i. When Insert is done, completion of the insertion is signaled to other threads
by setting new.inserting to 0, at line 18.

H 1 3 5 T

Fig. 3. A skewed search result at the completion of LocatePreds(q, 2). The preds
(dashed) are overlapping with the succs (dotted).

The skewed search results mentioned above occur due to the separation of
a node and its delete status. The delete flag is located in the predecessor node,
and knowledge about the predecessor is only available in the lowest level. Hence,
when LocatePreds searches for predecessors and successors to a key, at higher
levels, a node not having the delete flag set must be assumed to be non-deleted,
and thus qualifies as a successor. When the lowest level is reached, the node
may in fact turn out to be deleted, and the traversal will thus continue past
the higher level successor, until the correct position is found at the lowest level.
This results in preds[i] and succs[i], for all levels i > 0, being skewed in relation
to preds[0] and succs[0]. The situation is depicted in Fig. 3. The skew may also
occur at arbitrary levels, if the deleted prefix is extended during an ongoing
LocatePreds operation.

Algorithm 5 LocatePreds operation.

1 function LocatePreds(skiplist t q,key t k)
2 i← q.nlevels−1,pred ← q.head
3 del ←NULL
4 while i ≥ 0 do
5 〈cur , d〉 ← 〈pred .next[i], pred .d〉
6 while cur.key < k or cur.d or

(d and i = 0) do
7 if d and i = 0 then
8 del ← cur
9 pred ← cur

10 〈cur , d〉 ← 〈pred .next[i], pred .d〉
11 preds[i] ← pred
12 succs[i] ← cur
13 i ← i− 1

14 return (preds, succs, del)

The LocatePreds opera-
tion (Algorithm 5), locates the
predecessors and successors of a
new node that is to be inserted.
Starting with the highest-level
list, each list is traversed, un-
til a node with a greater key is
found, which is also either a) a
node not having its delete flag
set if the level is greater than
0, or b) a non-deleted node at
the lowest level (lines 6 – 10).
When such a node is found, it
and its predecessor are recorded,
and the search descends to the
level below, or is completed. The
last (at the moment of traversal)
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deleted node of the deleted prefix, is recorded in del, if traversed (line 7). It is
then returned together with preds and succs.

Memory management. The memory of deleted nodes has to be safely deal-
located. This is particularly difficult for non-blocking algorithms, since a thread
may be observing outdated parts of the shared state. We use Keir Fraser’s epoch
based reclamation (EBR) [4] to handle memory reclamation. In short terms, EBR
works as follows. Each thread signals when it enters and leaves an operation that
accesses the skiplist. After a node has been marked for memory reclamation by
some thread, the node will be deallocated (or reused) only when all threads that
may possibly have a (direct or indirect) reference to it have returned. Since in
our algorithm, a node is marked for recycling only when it can no longer be
reached from any pointer of form q.head.next[i], we guarantee that any thread
that enters after the marking, cannot reach a node that is recycled.

One property of EBR is that, even though it is very fast in general, the
memory reclamation is not truly non-blocking. A thread blocking in the middle
of an operation, i.e., after it has signaled entry, but before signaling exit, could
have (and must therefore be assumed to have) a reference to any node in the
queue, thereby effectively blocking reclamation of any nodes deleted after that
point in time. Since we focus on global performance, we do not consider this a
problem. If it is important to have non-blocking memory reclamation, there are
other standard solutions, such as hazard pointers [12] or reference counting [18]
for memory reclamation.

5 Correctness and Linearizability

In this section, we establish that our algorithm is correct, i.e., it is a lineariz-
able [7] implementation of a priority queue, it is lock-free, and all memory is
safely reclaimed. The linearizability of the algorithm has also been checked using
the SPIN model checker. The code for the SPIN model is listed in the appendix
(it is also available at the companion website of the paper).

Let us consider the (global) state of the algorithm at some point during its
execution. By a node, we mean a node of type node_t that has been allocated
at some previous point in time. A head-pointed node is a node that is pointed
to by a head pointer (i.e., a pointer of the form q.head.next[i]). A live node is a
node that is reachable by a sequence of 0 or more pointers of form next[i] from
a head-pointed node. A deleted node is a node that is pointed to by a lowest-
level pointer (of form next[0]) from a node, which has its delete flag set to 1. A
recycled node is a node that has been marked for recycling by MarkRecycle.

Linearizability. We first establish an invariant of the algorithm. Thereafter,
we prove that the algorithm is a linearizable implementation of a priority queue.
The invariant consists of three parts: part 1 specifies the structure of the lowest-
level list, part 2 specifies the postcondition of the LocatePreds operation, and
part 3 specifies the structure of the higher level lists.
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1. Structure of lowest-level list
(a) The set of live nodes and the next[0]-pointers form a linear singly linked

list, starting at the first head-pointed node, and terminated by the node
q.tail. Initially, the list does not contain any deleted nodes. After the
first invocation of DeleteMin, q.head.next[0] always has the delete flag
set.

(b) The live deleted nodes form a strict prefix of the live nodes.
(c) The live non-deleted nodes have increasing keys.

2. LocatePreds postcondition
When LocatePreds(q, k) returns, for any i, the following conditions hold:

(a) preds[i].key < k, or preds[i] is deleted.
(b) succs[i].key > k.
(c) preds[i−1] is reachable from preds[i] via a sequence of next[i−1] pointers,

or preds[i] is the head node.
(d) If for some j > 0, succs[0] is reachable from succs[j] by a sequence of

next[0] pointers, then either succs[j].d = 1 or del = succs[j].
3. Structure of higher-level lists

For any live node n except the head node, and for any i > 0, the node
pointed to by n.next[i] is reachable from n by a non-empty sequence of
next[0] pointers.

Proof. 1a) Since nodes are never unlinked from the list, the invariant follows by
noting that an insertion into the lowest-level list (at line 7 of Insert) always
inserts a new node between two contiguous ones. Initially the only nodes are
the sentinel head and the tail nodes, such that the tail is the successor of
the head. After the first DeleteMin operation, which sets the delete flag
in q.head.next[0], the only line that modifies q.head.next[0] is line 16 in
DeleteMin, always keeping the delete flag set at each write.

1b) Statements that may affect this invariant are:
(i) DeleteMin, line 9, which logically deletes x.next[0]: since x is either

deleted or the head node, DeleteMin may only extend an existing
prefix of deleted nodes, and

(ii) Insert, line 7, which inserts a node: LocatePreds and the semantics
of CAS guarantee that preds[0].next[0] does not have its delete flag
set, i.e., the node following the inserted one is not deleted.

(iii) DeleteMin, line 16, which updates the head’s lowest-level pointer: the
delete bit is always set in the CAS. Thus, a node may not indirectly
become non-deleted.

1c) By postconditions 2a and 2b, when LocatePreds returns, having been
called with key k as argument, we have that (i) k < succs[0].key, and
(ii) preds[0].next[0].key < k or preds[0] is deleted. The lowest-level inser-
tion of a new node at line 7 of Insert is completed only if preds[0].next[0]
= succs[0] and if succs[0] is non-deleted. If preds[0].key < k, then preds[0]
is deleted, and the node inserted becomes the first non-deleted node.

2a) Initially, when the traversal starts in LocatePreds, the first node (q.head),
which is also the first potential predecessor, has a key smaller than k, by
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definition. The preds and succs pointers are recorded when the condition for
the while loop in LocatePreds at line 6 no longer is true. The condition
for preds[i] is defined by the next to last iteration before the while loop
stops, as given by line 9. Hence, for preds, the condition is still true, and we
get preds[i].key < k or preds[i].d = 1, or i = 0 (the traversal has reached
the bottom level), and the predecessor to preds[0] has the delete flag set. In
either case, if not preds[i].key < k, then preds[i] is deleted.

2b) Follows directly from the negation of the condition for the while loop at
line 6 in LocatePreds.

2c) That preds[i − 1] is reachable from preds[i] via a sequence of next[i − 1]
pointers follows by the mechanism for traversing nodes at lines 6 – 10 in
LocatePreds. We also observe that the head node may be updated by
the Restructure operation, after LocatePreds have returned, rendering
preds[i− 1] unreachable from preds[i], i.e., the head node.

2d) If succs[0] is reachable from succs[j], for j > 0, then, at some point during
the traversal in LocatePreds, at some level i < j, succs[j] must have been
passed (not necessarily traversed), which is caused by some successor n of
succs[j] either (i) having the delete flag set, or (ii) n.key < succs[j].key. In
both cases it means that succs[j] is deleted, in the latter case by invariant
1c. If succs[j] does not have the delete flag set, but is deleted, then clearly
del = succs[j], as guaranteed by line 7, where the last (at the moment of
traversal) deleted node of the deleted prefix is recorded.

3) The invariant is determined at the moment of insertion, at line 13 in In-
sert. We have to consider reachability to an inserted node n from all its
predecessors, and reachability from an inserted node n to all its successors.
By postcondition 2a, for any i > 0, preds[i] is either deleted or preds[i].key
< n.key. If preds[i] is deleted, then it surely precedes n (by invariant 1b),
which is non-deleted or the last deleted node whenever line 13 in Insert is
determined to be executed, at line 11. Otherwise, we have that preds[i].key
< n.key and preds[i] non-deleted, and thus by invariant 1c preds[i] must
precede n.
Reachability from n to n.next[i], for any i > 0, via a sequence of next[0]
pointers, follows by observing that an insertion is only completed for levels i
for which the statement at line 11 in Insert is true. Hence, by postcondition
2d, succs[0] is not reachable from succs[j]. As both succs[0] and succs[j]
are part of the lowest-level list, this implies that succs[j] is reachable from
succs[0]. Since succs[0] clearly is reachable from n, the invariant follows.

We can now establish that our algorithm is a linearizable implementation of a
priority queue. Recall that a priority queue can be abstractly specified as having
a state which is an ordered sequence of (key,value)-pairs, and two operations:
DeleteMin, which removes the pair with the smallest key value, and Insert,
which inserts a (key,value)-pair at the appropriate position.

To establish that our algorithm is a linearizable implementation, we first
define the abstract state of our implementation, at any point in time, to be the
sequence of (key,value)-pairs in non-deleted live nodes, connected by next[0]
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pointers. By invariant 1c the keys are increasing. To prove linearizability, we
must then for each operation specify a linearization point, i.e., a precise point in
time at which the implemented operation affects the abstract state. These are
as follows.

DeleteMin The linearization point is at line 9 of DeleteMin in the case
that the operation succeeds: clearly the abstract state is changed in the
appropriate way (invariant 1b). In the case of an unsuccessful DeleteMin,
it linearizes at line 4, if the statement assigns q.tail to nxt (this is discovered
at line 5).

Insert The operation is linearized when the new node is inserted at line 7 of
Insert: clearly the new node is inserted at the appropriate place. Note that
Insert cannot fail: it will retry until successful.

Memory reclamation. We now establish an invariant that affects the memory
reclamation. We consider the memory reclamation to be correct if all memory is
eventually reclaimed safely, i.e., memory is reclaimed when it no longer will be
accessed by any thread. The invariant consists of two parts: part 1 defines the
structure of non-live nodes, part 2 specifies the postcondition of the Restruc-
ture operation.

4. Structure of non-live nodes
(a) An inserted node n such that n.inserting is set, is live.
(b) Only non-live nodes are marked for recycling.
(c) The non-live nodes are partitioned into sets of nodes, such that for each

set, either (i) all nodes in the set have been marked for recycling, or (ii) a
thread is allotted to the set, which currently executes lines 19 – 22 of
DeleteMin, and is in the process of marking all nodes in the set for
recycling.

5. Restructure postcondition
When Restructure(q) returns, then for any i > 0, q.head.next[i] is reach-
able from the node pointed to by q.head.next[0] at the start of the invocation.

4a) By inspecting the statements at lines 7 – 8 of DeleteMin, together with
the CAS at line 16, we see that the q.head.next[0] will not point past n.

4b) Follows from observing that when DeleteMin reaches line 19, then by
postcondition 5, all nodes preceding newhead are non-live. Clearly, newhead
is reachable from obshead, and the while loop hence terminates at newhead.
Furthermore, by invariant 4a, the head will not be modified to point to an
inserting but non-live node.

4c) Nodes are made non-live in DeleteMin at lines 16 and 17, as detailed by
postcondition 5. The thread for which the CAS at line 16 succeeded, gains
exclusive access (among DeleteMin threads performing memory reclama-
tion) to the segment of non-live nodes between the nodes pointed to by local
variables obshead and newhead, including the node obshead. The segments
are disjoint since obshead of a DeleteMin invocation will equal newhead of
a preceding DeleteMin invocation, as given by lines 2 and 16.
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5) We assume q.head.next[0] points to n when the Restructure operation
starts. We note that, after the first invocation of DeleteMin, q.head.next[0]
always points to a deleted node (If no node has been deleted, then the
condition is trivially true). We also note that there is at most one deleted
node not having its delete flag set, as a consequence of invariant 1b.
Now, for any i > 0, either the head-pointed node n′ at level i does not
have the delete flag set, in which case the Restructure does not update
q.head.next[i]. Since the delete flag is not set, either n′ is deleted, in which
case it may be equal to n, or it is not deleted, in which case it is clearly
reachable from n, by invariant 1b. In the case n′.d = 1, level i will be tra-
versed until a node not having its delete flag is observed, at lines 9 to 11.
Using the same reasoning as in the previous case, we reach the conclusion
that the observed node is reachable from n.

We can now conclude that memory reclamation is done safely, i.e, only nodes
not reachable from any pointer of the form q.head.next[i] is marked for recycling
(by invariant 4b), subsequently being recycled by epoch-based reclamation when
all threads that have observed a previous state of the head node have returned.
Furthermore, all memory is reclaimed, by invariant 4c.

Lock-freedom. We now briefly show that the algorithm is lock-free, i.e., for
each operation, infinitely often some invocation finishes in a finite number of
steps. All modifications of the data structure are performed using CAS, and for
each operation to finish, only a bounded number of successful CAS instructions
are needed. Whenever a CAS succeeds in an operation, that operation have
done progress, and if an operation’s CAS fails at some point, then it means that
another operation has done progress.

Even though the algorithm is lock-free, there is one situation in which the per-
formance may be deteriorated by a single blocking thread. A thread that blocks
during an Insert operation, causes the inserting flag of the corresponding
node to remain set for an indefinite duration. Thereby it prevents q.head.next[0]
from being updated to point beyond that node. This may eventually lead to a
very long (but finite) prefix of live deleted nodes, that must be traversed by all
DeleteMin operations.

6 Performance Evaluation

In this section, we evaluate the performance of our new algorithm in comparison
with two lock-free skiplist-based priority queues, representative of two different
DeleteMin approaches. We also report on the impact of the choice of the
parameter BoundOffset. Finally, we relate the algorithms performance to the
limits imposed by the necessity of performing one global update per DeleteMin
operation.

The compared algorithms are all implemented on top of Keir Fraser’s [4]
skiplist implementation, an open source state of the art implementation. Since
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the same base implementation is used for all compared algorithms, the perfor-
mance differences between the implementations are directly related to the algo-
rithms themselves, and hence, the DeleteMin operations. The two compared
algorithms are respectively based on:

– SaT – Sundell and Tsigas’ [17] linearizable algorithm, in which only the first
node of the lowest- level list in the skiplist may be logically deleted, at any
given moment. If a subsequent thread observes a logically deleted node, it will
first help with completing the physical deletion. The algorithm implemented
here is a simplified version of their algorithm, neither using back link pointers
nor exponential back-off, but it uses the same DeleteMin operation.

– HaS – Herlihy and Shavit’s [8] non-linearizable lock-free adaptation of Lotan
and Shavit’s [11] algorithm, in which deleted nodes need not be a prefix.
Logical deletion is performed using atomically updated delete flags. Physical
deletion is initiated directly after the logical deletion. Insertions are allowed
to occur between logically deleted nodes.

The algorithms are evaluated on two types of synthetic microbenchmarks,
and as a part of one real application, URDME [2]. The benchmarks are:

– Uniform – Each thread randomly chooses to perform either an Insert or a
DeleteMin operation. Inserted keys are uniformly distributed. This is the
de facto standard when evaluating concurrent data structures [5, 11, 17].

– DES – The second synthetic benchmark is set up to represent a discrete
event simulator (DES) workload, in which the priorities represent the time of
future events. Hence the key values are increasing: each deleted key generates
new key values that are increased by an exponentially distributed offset.

– URDME – URDME [2] is a stochastic DES framework for reaction-diffusion
models. In this benchmark, the priority queue is used as the event queue in
URDME. A model with a queue length of 1000 has been simulated.

The experiments were performed on two machines, (i) a 4-socket Intel Xeon
E5-4650 machine, of which each socket has 8 cores and a 20 MB shared L3-
cache, and (ii) a 4-socket AMD Opteron 6276 machine, of which each socket
has 8 “modules” (containing two separate integer pipelines, that share some
resources), and a 16 MB shared L3-cache. In addition, every two modules share
a 2 MB L2-cache. The compiler used was GCC 4.7.2, at O3 optimization level.
Each benchmark was run 5 times, for 10 seconds each time, of which the average
throughput is presented. The number of threads varied between 1 to 32. The
threshold for updating the head node, BoundOffset, was chosen in accordance
to the maximum latency of the setup, with a higher value for a larger number
of threads, ranging from 1 to 64. Threads were pinned to cores, to reduce the
variance of the results and to make cache coherence effects visible.

The scaling of the different priority queues is shown in Fig. 4. We see that in
general, our new algorithm is between 30 – 80% faster. The largest performance
improvement is seen in the DES benchmark, on the Intel machine. The perfor-
mance improvement of the Uniform benchmark is slightly smaller. We note that
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when using uniformly distributed keys, a majority of the inserts occur close to
the head, and as a consequence the CAS instructions are more prone to fail,
causing retrials of the operations. The penalty of the retry-search loop is slightly
higher in our case, because of the traversal of the prefix of logically deleted nodes.

We note a steep drop in performance going from 8 to 9 threads on the Intel
machine. This is a direct effect of threads being pinned to cores: up to 8 threads
all threads share the L3-cache. At 9 threads or more, communication is done
across sockets, with increased latency as a consequence. Likewise, for the AMD
machine: every 2 threads share an L2-cache, outside which communication is
more expensive.

Impact of BoundOffset. The choice of the parameter BoundOffset af-
fects the performance, weighing CAS contention against the cache and memory
latency. When BoundOffset has a low value, indicating that threads will try
to update the head node’s pointers more often, the probability that threads
will contend for updating the lowest-level head pointer increases. When it has
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a high value, the number of nodes in the prefix that must be traversed for each
operation increases, thus becoming more sensitive to the latency of memory.

In Fig. 5 we see that the effect of memory latency far outweighs that of
the CAS contention. As the offset increases, performance increases marginally,
as a result of decreased CAS contention and cachelines being invalidated less
often. At a certain offset, the performance drops drastically, indicating where
the total latency of the reads surpasses the latency incurred by updating the
head pointers. The main performance increase of the algorithm can hence be
concluded to come from the fact that only a single thread performs physical
deletion, i.e., there is no contention for updating the head’s next pointers. That
several nodes are physically deleted at the same time is less important.

Performance limitations. We investigated the scalability bottleneck of the
algorithm. For this goal, we devised a microbenchmark in which n threads access
a data structure consisting of n nodes in a circular linked list. Each thread k
traverses n− 1 nodes, and then perform a CAS modifying the kth node. Thus,
each node is modified by only one thread, but the modification is read by all other
threads. This behavior is intended to represent the read-write synchronization of
the DeleteMin operations. This corresponds to traversing the prefix of deleted
nodes, then updating the first non-deleted node using CAS. Of the nodes in the
deleted prefix, we can expect one modified node per other thread running, if we
assume fair scheduling.

When n reaches 32 threads, the microbenchmark achieves roughly 2.6 million
operations per second. This coincides roughly with the maximal throughput of
the new algorithm in Uniform. The difference can be attributed to that, in the
case of the microbenchmark, there is no false sharing at all, whereas in the
actual implementation, some false sharing may be expected. We then conclude
that the performance of the priority queue is entirely limited by the DeleteMin
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operation, and that, to achieve better performance, one would have to read less
than one modified memory position per other thread and operation, on average.

7 Conclusion

We have presented a new linearizable, lock-free, skiplist-based priority queue
algorithm, which achieves better performance than existing such algorithms,
mainly due to reduced contention for shared memory locations. In addition,
a simple benchmark indicates that the scalability of our algorithm is entirely
limited by the logical deletion part of the DeleteMin operation. We believe
that similar ideas for improved performance can be applied to other concurrent
data structures, whose scalability is limited by contention for shared memory
locations.
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A SPIN Model

In the SPIN model, we use the same approach as Vechev et al. [19]. A sequen-
tial priority queue model is managed in parallel with the concurrent model, and
whenever the concurrent model reaches a linearization point of one of its opera-
tions, the result of the concurrent operation is compared to that of the sequential
model.

In the following code listing, some parts of the full model have been left
out, among other the initiation of processes and data structures, the random
selection of operation, and the sequential model. The full details are available at
the homepage.

/*******************************************************************

* Types and global variables

**/

typedef node_t {

key_t key;

byte level;

bit inserting;

bit recycled;

/* the next[0] field and the delete bit d are colocated in one

* memory position */

bit d;

idx_t next[NLEVELS];

}

typedef queue_t {

idx_t head, tail;

}

/* The memory */

node_t nodes[NODES];

/* the priority queue */

queue_t q;

/*******************************************************************

* The algorithm

**/

/* CAS(addr, d, old, new) - representing a CAS, that will update addr

* to new, given that addr = old and d = 0. d represents hence the

* delete bit being a part of old. */

/* FAO(addr, val) - representing a Fetch-and-Or, that will update

* the contents at addr to *addr | val. */
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/*********************************************************************/

inline LocatePreds(key) {

d_step { /* resetting some local vars */

cur = 0; pred = 0; d = 0; del = 0;

i = NLEVELS; pred = q.head

}

/* NB: index i is offset by one in comparison to paper,

* due to lack of negative bytes in promela */

WHILE (i > 0) -> /* for each level */

d_step { /* colocated together */

cur = nodes[pred].next[i-1];

d = nodes[pred].d

}

WHILE (nodes[cur].key < key || nodes[cur].d || (d && i == 1)) ->

atomic {

IF (d && i == 1) -> del = cur FI;

pred = cur; /* local */

/* colocated together */

cur = nodes[pred].next[i-1];

d = nodes[pred].d

}

ELIHW;

atomic { /* local vars */

preds[i-1] = pred;

succs[i-1] = cur;

i-- /* descend to next level */

}

ELIHW

}

/*********************************************************************/

inline Insert(key) {

alloc_node(new, key)

retry:

LocatePreds(key)

/* bail out if key already exists */

IF (nodes[succs[0]].key == key && !nodes[preds[0]].d

&& nodes[preds[0]].next[0] == succs[0]) -> goto end_insert FI;

nodes[new].next[0] = succs[0];

/* Lowest level */

atomic { /* linearization point of non-failed insert */

CAS(nodes[preds[0]].next[0], nodes[preds[0]].d, succs[0], new);

if :: (cas_success) ->

seq_add(new, key) /* check sequential model */

GCASSERT(succs[0], new)

:: else -> goto retry /* restart */

fi

}

/* swing upper levels */
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j = 1; /* i is being used in locatepreds */

WHILE (j <= nodes[new].level) ->

nodes[new].next[j] = succs[j];

IF (nodes[new].d || nodes[succs[j]].d || succs[j] == del) ->

goto end_insert FI;

atomic {

CAS(nodes[preds[j]].next[j], 0, succs[j], new);

IF (cas_success) ->

GCASSERT(succs[j], new)

j++

FI

}

IF (!cas_success) ->

LocatePreds(key) /* update preds, succs and del */

IF (succs[0] != new) -> goto end_insert FI

FI

ELIHW;

end_insert:

nodes[new].inserting = 0

}

/*********************************************************************/

inline Restructure() {

i = NLEVELS - 1; pred = q.head;

re_continue:

WHILE (i > 0) ->

h = nodes[q.head].next[i];

cur = nodes[pred].next[i];

IF (!nodes[h].d) -> i--; goto re_continue FI;

WHILE (nodes[cur].d) ->

pred = cur;

cur = nodes[pred].next[i]

ELIHW;

atomic {

CAS(nodes[q.head].next[i], 0, h, nodes[pred].next[i]);

IF (cas_success) ->

GCASSERT(nodes[pred].next[i], q.head)

i--

FI

}

ELIHW

}

/*********************************************************************/

inline DeleteMin () {

d_step {

d = 1; x = q.head; offset = 0;

obshead = nodes[x].next[0]

}
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WHILE (d) ->

atomic {

offset ++;

/* nxt & d colocated */

nxt = nodes[x].next[0];

d = nodes[x].d;

IF (nxt == q.tail) ->

/* empty: got linearized when reading nxt */

seq_empty() /* check sequential model */

goto end_remove

FI

}

IF (nodes[x].inserting && newhead == NODES) ->

newhead = x

FI;

atomic {

/* linearization point */

d = FAO(nodes[x].d, 1)

IF (!d) ->

/* check linearization */

key = nodes[nodes[x].next[0]].key;

seq_remove(key) /* check sequential model */

FI

}

x = nodes[x].next[0]

ELIHW;

IF (offset <= BOUNDOFFSET) -> goto end_remove FI;

IF (newhead == NODES) -> newhead = x FI;

atomic {

CAS(nodes[q.head].next[0], 0, obshead,newhead);

if :: (cas_success) -> GCASSERT(newhead, q.head)

:: else -> goto end_remove

fi

}

Restructure()

cur = obshead;

WHILE (cur != newhead) ->

nxt = nodes[cur].next[0];

nodes[cur].recycled = 1; /* MarkRecycle */

cur = nxt

ELIHW;

end_remove:

}


